

Mangawhai CWWTP

Stage 1 Summary Report

NSD OPUS

Contact Details

Name: Jessica Moser

Opus House, Princes Street Private Bag 3057, Waikato Mail Centre, Hamilton 3240 New Zealand

Telephone: +64 7 838 9344 Mobile: 027 541 0573

Document Details:

Date:	10/09/2018
Reference:	1-13586.00
Status:	Final

Prepared By

Jessica Moser Graduate Environmental Engineer

Reviewed By

Andrew Springer Principal Wastewater Treatment Engineer

Approved for Release By

los _____

Eros Foschieri Team Leader – 3 Waters

νι<mark>κ</mark>μι ορυς

Contents

1 Executive Summary	1
2 Issues, Root Causes and Effects	1
3 Risks	1
4 Prioritisation	2
5 Conclusion	2
Appendix A: Minutes of Root Cause Workshop	3

Appendix 1: Issues with the WWTP Appendix 2: Priority of Issues Appendix 3: Possible Solutions Appendix 4: Workshop Slides

1 Executive Summary

As outlined in the Offer of Service for Upgrade of Mangawhai WWTP, 20 June 2018, the technical support that WSP Opus will provide shall be broken into four stages; including Needs Assessment, Develop Solutions, Procurement and Delivery. This approach is based on determining the root cause of existing and future issues and understanding the associated risk in order to prioritise the required upgrades. This report summarises the findings of the Needs Assessment for the upgrade of Mangawhai WWTP and presents the finalised issues, risks and prioritisation. The assessment included an inspection of the plant, review of the influent and effluent data and a Root Cause Workshop. The minutes of meeting from the workshop have been included in Appendix A and provide the basis for this summary report.

2 Issues, Root Causes and Effects

The strategy for identifying the needs of the plant, included evaluating the existing performance data and inspection of the site. In this way, all the information on the existing condition of the plant and its performance could be assessed. To ensure that no issues would be missed, the assessment was conducted in the form of a workshop where all stakeholders could contribute to the identification of issues.

The issues were captured during the workshop held on 31st August and each issue was evaluated for its root cause and its potential effects. The results from the workshop are included in **Appendix 1** of the Minutes of Meeting (**Appendix A**).

3 Risks

The method for prioritisation of the identified issues involved evaluating each issue for its associated likelihood and impact. The key for each ranking is included in **Appendix 2** of the Minutes of Meeting. The table below summarises the risk rating for each issue as was agreed upon during the workshop.

				Impact (I)		
		VL	L	М	Н	VH
	VH			2, 10, 11		
(L)	Н			4, 13	9, 14	5, 6, 12
lihood	М					
Like	L			7		
	VL					

Table 1. Risk Rating for Identified Issues
--

4 Prioritisation

The issues have been listed below in their order of prioritisation from most important to least important as determined by the associated risk of each issue. The issues are labelled according to the number that each issue was recorded under during the Root Cause Workshop.

- 5 The decanter drives are wearing out and there is a long lead time for these to be replaced. This means that in the event of a drive wearing out, the process would be restricted to one tank for approximately 6 weeks or more while waiting for the replacement drive to arrive to site. The quality of the effluent would be compromised during the time that the plant would run on one tank.
- 6 The capacity of the existing aeration system is insufficient for consistently meeting the DO setpoint. This issue will continue to get worse as the population in the catchment increases.
- 12 The existing blowers sometimes run at peak demand. The forecasted continued growth in the catchment will increase the demand on the blowers and result in prolonged periods of peak demand and there is currently no standby blower provided.
- 9 The odour motor cover has corroded and left the moving machinery unguarded which is a serious safety concern.
- 14 There has been an increase in flow from the pump station TPS which has resulted in more flow being pumped to the WWTP. This increase exceeds the screen capacity and may also exceed the intermediate pump and transfer pump capacity and result in overspill of effluent.
- 2 Seasonal settlement problems have been leading to solids loss from the reactor.
- 10 There have been TDS exceedances recorded in some samples.
- 11 There is no RAS flow meter and therefore no method to control RAS flow rates if required.

4 There is no control of aeration in the anoxic zone. There is a need to both prevent solids build up in the tank and also establish anoxic conditions for nitrate removal.

- 13 High flow mode leads to short cycle and poor treatment. These incidences will increase in frequency with the expected 35% growth over the next ten years.
- 7 There is settlement occurring in the intermediate tank.

5 Conclusion

The needs assessment (Stage 1) has been completed and has resulted in the definition and prioritisation of existing issues with the Mangawhai WWTP as well as issues that are expected to occur within the next 10 years. The next stage of this project is to develop solutions that will meet these needs. The developed solutions will form the basis for supplier enquiry.

ארא | OPUS

Appendix A: Minutes of Root Cause Workshop

\\SD OPUS

Minutes of Meeting

File	e No:	1-13586.00	Date:	31/08/2018	Time:	11am-3pm
Sul	oject:	Mangawhai CWWTP				
Loc	cation:	KDC Office, Mangawhai		Minutes by:	Jessica M	loser
	Persons	Present	Organisa	tion		
1	Brian Arm	istrong, BA	Kaipara D	istrict Council		
2	Donnick N	/lugutso, DM	Kaipara D	istrict Council		
3	Mark Bell	, MB	Kaipara D	istrict Council		
4	Robin Joh	inson, RJ	Trility			
5	David Olle	erton, DO	Trility			
6	Andrew S	pringer, AS	WSP Opu	IS		
7	Eros Foso	chieri, EF	WSP Opu	IS		
8	Jessica M	loser, JM	WSP Opu	IS		

Item Discussion and Action

1 Overview

AS presented an overview of the Mangawhai CWWTP which included site layout, flow, performance and growth forecast.

2 Issues with the WWTP

AS went through each step of the plant methodically to capture the existing issues. The issues were discussed and agreed upon by all present. A summary of the issues which were collated are included in **Appendix 1**.

3 Root Cause of the Issues

For each issue identified, the group discussed what the root cause for that issue might be as well as the effect of that issue at present and/or in the future (up to 10 years). These causes & effects were agreed upon by all present and listed in **Appendix 1**.

4 Priority of Issues

Each issue was ranked according to likelihood and impact, a table for each of these factors is included in **Appendix 2** to detail the meaning for each score. The combination of each issues likelihood and impact scores determined where it sits on the risk table. The completed risk table is included in **Appendix 2** and was agreed upon by all present. The risk table was used to prioritise the issues in terms of which should be resolved first, the order of priority is included in **Appendix 2**.

⁵ **Possible Solutions**

Potential solutions were briefly discussed by all present and suggestions are included in **Appendix 3**. The options for solutions will be confirmed at Stage 2 of the project.

ltem	Discussion and Action		
6	Confirm site boundary limits Completed	MB	7/9/18
7	Confirm pressure of air in main at blower at bottom water level as indicator of change in diffuser performance	RJ	14/9/18
8	Assess sand filter condition and sand quantity by inspection	RJ	14/9/18
9	Replace cover on odour motor	RJ	ASAP
10	Issue workshop report for comment Completed	AS	7/9/18
11	Electrical and structural condition assessment by Trility next year.	DO	2019
12	Provide estimate of hours for Stage 2	AS, JM	20/9/18
13	Work up options then have a workshop to agree preferred options	AS, JM	12/10/18
14	Propose procurement strategy	ALL	19/10/18
15	Price options with Trility.	DO, AS	26/10/18
16	Specifications to be produced as needed	AS, JM	TBC
17	Complete specified work	TBC	TBC
	After meeting correspondence		

¹⁸ DM in discussion with Curt Martin (KDC) raised another potential issue that may need addressing. The issue relates to the possibility of overflows at the inlet works due to increased peak flows to the treatment plant.

Further data analysis is required to understand duration of high flows currently and impact on wet well level at TPS. Growth strategy required for catchment upgrades to predict when increase in flow may occur.

Appendix 1: Issues with the WWTP

			Likelihood	Impact
1.	Remov	ed from notes as was combined in 4 below.	-	-
2.	Issue:	Seasonal settlement problems leading to solids loss from	VH	М
	Cause	Floc loading & variable feed, limited control on RAS,		
	Effoct	intermediate not buffering adequately		
	Lifeot.	sand filters		
3.	Issue:	Inaccessible coarse air valve	-	-
	Cause: Effect:	Valve installed outside handrail Safety is managed by not using the valve		
4.	Issue:	No control of aeration in anoxic zone, need to prevent	Н	М
		solids build up in tank, but want anoxic condition to		
	Cause	Inaccessible manual valve installed outside handrail		
	Effect:	Safety RISK is managed by not using the valve		
5.	Issue:	Decanter drives wearing out. Long lead time item that will impact on performance of effluent as restricted to one tank	Н	VH
	0	only.		
	Effect:	Would take ≥6 weeks to replace		
6.	Issue:	Aeration capacity not meeting DO set point at times.	Н	VH
	Cause	Predictions indicate will get worse with growth.		
	Effect:	Compliance, particularly ammonia and TN		
7.	Issue:	Settlement in intermediate tank	L	М
	Cause	Solids settle in flat bottom tank below level of pumps, insufficient scour normally		
	Effect:	Manually managed (cleaning 3x per year)		
8.	Issue:	Media in sand filters unknown	?	?
	Effect:	Not a compliance issue currently		
9.	Issue:	Motor cover corroded	Н	Н
	Cause:	Some H ₂ S leakage at odour control		
10	lesuo:	TDS exceedance of average standard in some samples	νн	М
10.	Cause	More concentrated wastewater in summer	VII	IVI
	Effect:	Not within our reasonable control		
11.	Issue:	No RAS flow meter so unable to control RAS flow rates if required	VH	М
	Cause	Not included in design		
	Effect:	sludge settlement		
12.	Issue:	Blowers at peak demand at times. Growth will increase	Н	VH
		demand and require longer operation in this condition. No standby provided		
	Cause	Increase due to load growth,		
	Effect:	Possible blower failure will lead to non-compliance		

13.	Issue:	High flow mode leads to short cycle and poor treatment. Will increase in frequency with expected 35% growth over 10 years.	Н	Μ
	Cause:	Increase flow exceeds threshold for high flow mode operation		
	Effect:	Resulting in short cycles at times of high summer loading.		
14.	Issue:	Increase in flow at TPS requires more flow to be pumped to WWTP. Increase exceeds screen capacity and may exceed intermediate pump and transfer pump capacity. Current peak daily flow at 1600 m3/d, but instant flow at 5500 m3 equivalent.	Н	Н
	Cause:	Increase in flow from catchment growth at peak times.		
	Effect:	Resulting in higher instantaneous flows to treatment, potentially overloading systems and may result in overspill of effluent.		

Appendix 2: Priority of Issues

Key for Likelihood Ranking

	Time	Descriptive	Frequency
VH	< 1 Year	Almost Certain	Nearly Continuous
н	1-5 Year	Likely	Common
Μ	5-10 Year	Probable	Occasional
L	10-20 Year	Unlikely	Infrequent
VL	>20 year	Rare	Rare

NS) OPUS

Key for Impact Ranking

			IMPACT		
	VL	L	М	н	VH
Safety	Injury not needing medical treatment	Injury Needing Medical Treatment, No lost time	Injury Off Work < 5 Days	Permanent Injury, Off Work > 5 Days, Health Issue	Fatality, Permanent Disability
Pollution	Event with potential occurs, but No impact	Cat 4, Local Impact, short duration, include discharge to ground	Cat 3 Short duration Impact, local effect only. Visual Impact	Cat 2 Substantial Impact- including downstream water extraction and use	Cat 1 Fish Kill, impact on downstream water extraction and use
Consent Compliance	No Impact	Sample Exceeds Operational Action Limit	Sample exceeds annual average	Sample Exceeds 90%ile	Consent Condition or Standard Breached
Customer/Community Nuisance	Occasional Nuisance, no complaints	Regular Nuisance, single property	Regular Affecting multiple customers	Widespread Nuisance Local Action Group	Enforcement Action
PR	No Impact	Local Complaint	Social Media Coverage	Local Media Coverage	National media Coverage
Microbial Impact on Water Use	No Impact	Recreational standard of 260 E coli/100ml exceeded < 1 day	Recreational Standard exceeded 1-2 days, can be managed	Recreational Standard Exceeded > 3 days, temporary food restriction	Long term unfit for recreation, food source contamination
Impact on Water Source	No Impact		Irrigation restricted	Water supply restricted take or additional treatment required	Water Supply shut down > 1 day
Irrigation Impacts	No Impact		Exceedance requires storage and Blending	Exceedance of Short term loading rates, within annual average	Pollution impacting on water supply/ exceed annual loading

Risk Table

				Impact (I)		
		VL	L	М	Н	VH
	VH			2, 10, 11		
(L)	Н			4, 13	9, 14	5, 6, 12
lihood	М					
Like	L			7		
	VL					

Order of priority: 5, 6, 12, 9, 14, 2, 10, 11, 4, 13, 7

Appendix 3: Possible Solutions

A short review to identify potentially simple solutions was undertaken. The following will be considered in options. Other options may be considered.

- RAS Flow Meter and RAS control to zone linked to SCADA 2 & 11 3&4 Automate valves to anoxic and move within reach 5 Buy spare drive as shelf spare Post Meeting Note: RJ is seeking pricing for decanter drive spare and will feedback to group once quote and lead time is known 6 & 12 Aeration design to be reviewed and upgraded/ flow balancing 7 Air mix or drain Assess condition of sand filters. Remediate as needed 8 Post Meeting Note: Trility will undertake this inspection and report back on the condition by the end of September 9 Replace cover for motor ASAP Post Meeting Note: The area has been barricaded off and the new cover has been ordered as well as an additional spare. To be installed as soon as delivery to site is achieved.
- 10 Do nothing- reverse osmosis not viable cost
- 13 Balance tank/ screen upgrade or TPS storage

Appendix 4: Workshop Slides

							Inflow Statistics
Year	Qavg (All Year)	Qavg (Autumn/ Winter)	Qavg (Spring/ Summer)	Qavg (Xmas)	Qmax (All Year)	Qmax (Xmas)	
			(m)	9/d)			
2012	301	306	275	598	894	925	
2013	296	262	293	664	971	971	
2014	332	297	329	681	1300	1024	
2015	354	318	420	701	1024	1142	
2016	492	465	473	737	1546	1204	
Total average	369	336	379	696	1210	1085	
2013-2016	500						
	Year 2012 2013 2014 2015 2016	Year Qavg (All Year) 2012 301 2013 296 2014 332 2015 354 2016 492	Year Qavg (All Year) Qavg (Autumn/ Winter) 2012 301 306 2013 296 262 2014 332 297 2015 354 318 2016 492 465	Year Qavg (All Year) Qavg (Autumn/ Winter) Qavg (Spring/ Summer) 2012 301 306 275 2013 296 262 293 2014 332 297 329 2015 354 318 420 2016 492 465 473	Year Qavg (AII Year) Qavg (Autumn/ Winter) Qavg (Spring/ Summer) Qavg (Xmas) 2012 301 306 275 598 2013 296 262 293 664 2014 332 297 329 681 2015 354 318 420 701 2016 492 465 473 737	Year Qavg (AII Year) Qavg (Autumn/ Winter) Qavg (Spring/ Summer) Qavg (Xmas) Qmax (AII Year) 2012 301 306 275 598 894 2013 296 262 293 664 971 2014 332 297 329 681 1300 2015 354 318 420 701 1024 2016 492 465 473 737 1546	Year Qavg (AII Year) Qavg (Autumn/ Winter) Qavg (Spring/ Summer) Qavg (Xmas) Qmax (AII Year) Qmax (Xmas) 2012 301 306 275 598 894 925 2013 296 262 293 664 971 971 2014 332 297 329 681 1300 1024 2015 354 318 420 701 1024 1142 2016 492 465 473 737 1546 1204

Generonhuner			Avera	ge Values (mg/1)		
ceasuryea	TSS	B005	Total P	Total N	NH3-N	NO3-N	-000
2013							
Autumn/Winter	505	282	12	84	79	0.04	795
Spring/Summer	362	245	12	89	83	0.03	588
Xmas	401	469	15	109	101	0.05	900
All year	443	287	12	88	82	0.04	718
2014							
Autumn/Winter	362	213	14	84	73	0.02	657
Spring/Summer	333	412	11	62	51	0.003	333
Xmas	460	421	14	128	109		939
All year	364	363	13	82	71	0.08	564
2015							
Autumn/Winter	390	299	12	99	78	0.07	765
Spring/Summer	413	336	13	102	82	0.05	696
Xmas	444	417	14	128	110		966
All year	421	311	12	97	78	0.07	795
2016							
Autumn/Winter	569	333	12	80	60	0.08	938
Spring/Summer		418	12	84	68	0.10	917
Xmas	605	744	14	109	84	0.06	969
All year	568	371	12	81	64	0.08	929
Total average							
Autumn/Winter	457	282	12	87	72	0.05	785
Spring/Summer	277	353	12	84	71	0.05	634
Xmas	477	513	14	119	101	0.08	943
All year	449	333	12	87	74	0.05	752
Generophene			90%4	ile Values (ng(i)		
consurveu	TSS	B005	Total P	Total N	NH3-N	NO3-N	003
Total average	667.2	446.5	14.62	108.8	96.8	0.1	1050

Concentration of Inlet

Melau:

A autome 1 winter period inductes sampling taken from March to August

The profile is a service particular includes sampling taken than September to Nevember and Fobruary C Dividence (New Year period includes uangling taken from December and January of the following peer.

NSD OPUS

					Plai	nt Des	sign
Parameter	Design Average*	Peak Week	Current Average	Current Peak	2023 Peak	2028 Peak	
Average Flow m³/d	600	2120	600	1200	1410	1620	
BOD kg/d	180	636	210	840	990	1130	
TSS kg/d	180	636	270	572	672	772	
TKN kg/d	30	106	105	140	164	188	
TP kg/d	7.2	25.4	7.2	13	16	19	

*Based on EcoCare Design Report (2009)

NSD OPUS

Colour Code Key: Average Exceeded Single Sample Exceeded No Issues				Conse Condi	ent tions	
				15		
			Performance Requirer	rents		
Parameter	Units	Median	Performance Requiren Average	90 th Percentile		
Parameter Group A Parameters (Weekly Sampling)	Units	Median	Average	90 th Percentile		
Parameter Group A Parameters (Weekly Sampling) E. coli	Units	Median 10	Performance Requiren	90 th Percentile		
Parameter Group A Parametera (Weekly Sampling) E. coli Group B Parameters (15 day Sampling)	Units	Median 10	Average	90 th Percentile		
Parameter Group A Parameters (Weekly Sampling) E. coll Group B Parameters (15 day Sampling) Total Dissolved Solids	Units MPN mg/L	Median 10	Performance Requirem Average 500	90 th Percentile		
Parameter Group A Parameters (Weekly Sampling) E. coll Group B Parameters (15 day Sampling) Total Dissolved Solids Total Nitrogen	Units MPN mg/L mg/L	Median 10	Performance Requirem Average 500 30	90 ^m Percentile 100		
Parameter Group A Parameters (Weekly Sempling) E. coli Group B Parameters (15 day Sampling) Total Dissolved Solids Total Nitrogen Phosphorus	Units MPN mg/L mg/L	Median 10	Performance Requirem Average 500 30 15	90 th Percentile 100		
Parameter Group A Parametera (Weekly Sampling) E. coli Group B Parameters (15 day Sampling) Total Dissolved Solids Total Nitrogen Phosphorus Total Suspended Solids	Units MPN mg/L mg/L mg/L	Median 10	Performance Requirem Average 500 30 15 10	90 th Percentile 100		

l ſ		E	coli point A	/В	
I I	Date	Sample	Median(2)	90%ile	
		MPN/100	MPN/100	MPN/100	Effluent
	Tuesday, 4 July 2017	1	1	1	Emaone
	Monday, 10 July 2017	1	1	1	Performance
	Weinstay, 20 July 2017	1	1	1	renormance
	Massing, 21 July 2017	1	1	1	Data
	Transby, WAgari 2017	1	1	1	Data
	Tensing, 18 August 2017	1	1	1	
	biorday, 21 August 2017	1	1	1	
	Tuesday, 24 August 2017	1	1	1	
	Marstay, 4 Reptender 2017	1	1	1	
	Westensby, 12 Representer 2017	1	1	1	
	biorday, 18 depender 2417	1	1	1	
	kionday, 25 Baptember 2017	1	1	1	
	Mosting, 2 October 2017	1	1	1	
	Marsing, 18 Cirister 2017	1	1	1	
	Twesday, 94 Oxiolaer 2017	1	1	1	
	kinning, 30 Ostahar 2017	1	1	1	
	Wischesday, 8 November 2017	1	1	1	
	Tuesday, 14 November 2017	1	1	1	
	Theosing, Sci Navendur 2017	1	1	1	
	Westvestay, 8 Deventor 2018	1	1	1	
	bionday, 11 December 2017	1	1	1	
	Tenaday, 19 December 2017	1	1	1	
	Teurotay, 28 December 2017	1	1	1	
wsp	OPUS				-

	E	coli point Al	в	
Date	Sumple	Median(2)	30%de	
	MPN/100	MPN/100	MPN/100	Effluent
Distribuy, & Jonanay 2019	3	1	1	Emuent
Monday, 22 January 2018	1	1	1	Derfermenee
Tuesday, 30 January 2018	1	1	1	Performance
Monthly, & Falkrung 2018	1	1	1	Data
Marstey, 12 Palencey 2018	1 1	1	1	Data
Manday, 10 Palmony 2018	1 1	1	1	
Tunniny, 27 Petersvy 2018	1	1	1	
Monstay, & March 2010	1	1	1	
Tuesday, 13 March 2018	1	1	1	
Turnstey, 39 March 2016	1	1	1	
Turnetsy, 19 April 2019	1 1	1	1	
Wednesday, 18 April 2018	69	1	2.8	
Nostry, 29 April 2016	1	1	2.8	
Mostly, 25 April 2018	1	1	1	
Tourstay, 3 May 2016	1	1	1	
Manufactory, 7 Diray 2016	1	1	1	
Manday, 14 May 2018	1	1	1	
Monday, 21 May 2010	1	1	1	
Manday, 28 May 2018	1	1	1	
Tuestay, 5 June 2016	1	1	1	
Monthly, 11 Jane 2019	1	1	1	
Tuesday, 19 Jane 2018	8	1	42	
Monstay, 29 June 2016	1	1	2.8	
NS) OPUS				-

										Ef Pe	fluent erformance
										Da	ita
Provint found 10.12 years	Π	nx.	1	4E	1	15			1.00	en	
Sale flow or ighted comparate	Sharing it.	Ange	1	Аннера	Man pla	Awage	Read.	Лингера	Many a	Analys	
Resource Opracing Units		100		10	Ter	14		45	- 11	48	
1004054 (1.459 (017)	85	are 1	45	8.2	17.8	93	-	43			
Westurning, Mildle 1975	200		100		14.6	194	- M	N N		100	
Touring, 19 Jugent SVII	30	34	34	7.4	NU	19.4	59	30		44	
Nito Stage Mil	- CT	34	45	7.8	24	12.4	1,5	1.0		- 44	
Relating, & Replanter 1975	33	23	36			71.0	37	24		44	
Acting 31 Rejuster 5/11	-	3	73	- 43		113	63	24	-	47	
Sector, D Carolier Mills	29	80	11.8	u	19.1	19.2	7.8	- 43	73	42	
Tender, Mitchie 2013		25	114	7.4	38.0	ПA	13		14	-	
ATTACHMENT & GROWN ATTAC		22	- 65		29	10.5	8.8		73	u	
Territo, 21 Keamine 2017	42	-	44	7.8	H.E.	11.4	7.3	- 24		8.7	
States ing & December 2013	***	411	- 44	6.9	8. *	10.1	*3	7.8	8	7.5	
WARDER STOPPORT STO	67	-	65	1.7	14.W	19.7	tL.I	7.8		1.0	
Publics, Tuloranov 2014	726	424	48			94	м	2/1	ŧ	78	
String, IR Jacoby Still	2 0	- 47	14	4.0	144	193	4.0	12	8	47	
ADDRESS & FRIDERS BITS	-	-	11.5	2.8	44.2	87.8	8.8	7.8	-	2.6	
Rodag 16 Peteroy B14	284			2.3	-	34	1.4		4	87	
Skreing # Ekants SPA	388	45	Ľ.	4.8	17.8	25. 1	45	13	ġ,	- 64	
Terminy, Sitting and	ŧ	ŧ	8	8.7	17.8	20.5	8.1		73	u	
Reducting, Lipsk 2514	977	471	100	7.7		-	7.7	14	- 48		
Teaning: 19-April 2016		4	劫	7.6	2 1		7.1	5	44	- 44	
Pridescul bier Mith	471	ŝ	44		D.A	10.5	22	25	ŝ	2.0	
Adapta, 19 May 2014	6 7		- 14	6.0	20.0	262	Ľ,	51	- 24	44	
400.00 × 3 400.0 2010	100	-	18.5	7.8	22.2	PLS .	8.8	0	8	47	
Manday, 19 Jaco 2018		49 2	104	8.7	174	BIA	7.6	- 62	168	47	
NSD OPU:	S										-

		Process Ur Hydraulic Capacity
Description	Estimated Hydrautic Copucity (Ks)	
Server:	70 (7	
තින්ටරය සිංහ	160-(22 resultana resultang lisar)	
1485 Descript System	200(4 hr sysia discharge in 193)	
348 pump	6.6	
VANO pump	н	
internesibile Terrster Pump	48	
Pinte épice	29	
UV system	3.	
Radi Brassa Bastern	4.44	

NSD OPUS

www.wsp-opus.co.nz

